Recently in conversation, a relative mentioned anecdotally how heart complications seemed to be getting more and more treatable, and cited several examples of heart-attack victims she knew who had made successful recoveries from things that would have almost certainly been death sentences once. I thought it might be interesting to try and visualize this decline over the years, in addition to seeing if there are similar declines for other illnesses. I’ve also heard women and minorities talk about their struggles with the healthcare system, so I thought it would also be illuminating to see how the trends in mortality differ by race and gender.
To start with, I went to the CDC compressed mortality dataset and queried the 1999-2016 database. Each database organizes cause of death based on the International Classification of Disease (ICD), which has updated several times over the years. While older data is available, the classification system would be slightly different the further back I went, and I’d have to try to find some way of equating them all. Fortunately for my purposes, the 1999 to 2016 data, which uses the 10th edition of the ICD, should be plenty. I queried the system for information organized by ICD sub-chapter, year, age, race, and gender.
For this analysis, I’m not actually interested in examining the data by age, but I still need to query the age data in order to create age-adjusted death rates, which is what the CDC recommends using when comparing multiple populations. The reason for this is that some causes of death are far more common for certain age groups. Various illnesses are common for older adults but rare for children, or vice-versa. Alternatively, some things are much more dangerous depending on age group. For example, chicken-pox is considered fairly harmless for children, but can cause severe complications in adults. If we had a population with relatively few children, but lots of older adults, we might expect to see a much higher rate of death for chicken-pox, even if the rate of chicken-pox is exactly the same as a more child-heavy group. In order to account for this, age-adjusted mortality rates take a weighted average of different age groups in order to transform each population into a standardized population, where the proportions of each age group are the same. Currently the CDC uses the estimated population for the year 2000 as their standardized population. The estimates and the related age weights can be found here.
Unfortunately, the CDC Wonder query system won’t output any query that produces more than 75,000 results. In order to get all the data I wanted, I had to submit a separate query for each individual age range, meaning I actually have 14 datasets to work with.
Before I start analyzing the data, I need to do some basic data cleaning, and some formatting as well. Fortunately for this analysis, I’m just using data that was output by a single query system, and I was able to remove a lot of unwanted input at the time of the query, so there shouldn’t be too much cleaning needed.
To start with, I’ll have to merge my 14 datasets into a single dataframe. After that, I want to get a clear idea of what I’m working with, so I’m also going to ask for the dimensions of the dataframe as well as its basic structure.
library(tidyverse)
library(knitr)
library(kableExtra)
# Load data by age
df_1 <- read.delim("data/mortality_1999-2016_1.txt")
df_1_4 <- read.delim("data/mortality_1999-2016_1-4.txt")
df_5_9 <- read.delim("data/mortality_1999-2016_5-9.txt")
df_10_14 <- read.delim("data/mortality_1999-2016_10-14.txt")
df_15_19 <- read.delim("data/mortality_1999-2016_15-19.txt")
df_20_24 <- read.delim("data/mortality_1999-2016_20-24.txt")
df_25_34 <- read.delim("data/mortality_1999-2016_25-34.txt")
df_35_44 <- read.delim("data/mortality_1999-2016_35-44.txt")
df_35_44 <- read.delim("data/mortality_1999-2016_35-44.txt")
df_45_54 <- read.delim("data/mortality_1999-2016_45-54.txt")
df_55_64 <- read.delim("data/mortality_1999-2016_55-64.txt")
df_65_74 <- read.delim("data/mortality_1999-2016_65-74.txt")
df_75_84 <- read.delim("data/mortality_1999-2016_75-84.txt")
df_85 <- read.delim("data/mortality_1999-2016_85+.txt")
# Merge into single dataframe
df <- rbind(df_1,
df_1_4,
df_5_9,
df_10_14,
df_15_19,
df_20_24,
df_25_34,
df_35_44,
df_45_54,
df_55_64,
df_65_74,
df_75_84,
df_85)
dim(df)
## [1] 138420 14
str(df)
## 'data.frame': 138420 obs. of 14 variables:
## $ Notes : chr "" "" "" "" ...
## $ ICD.Sub.Chapter : chr "Intestinal infectious diseases" "Intestinal infectious diseases" "Intestinal infectious diseases" "Intestinal infectious diseases" ...
## $ ICD.Sub.Chapter.Code: chr "A00-A09" "A00-A09" "A00-A09" "A00-A09" ...
## $ Year : int 1999 1999 1999 1999 2000 2000 2000 2000 2000 2001 ...
## $ Year.Code : int 1999 1999 1999 1999 2000 2000 2000 2000 2000 2001 ...
## $ Age.Group : chr "< 1 year" "< 1 year" "< 1 year" "< 1 year" ...
## $ Age.Group.Code : chr "1" "1" "1" "1" ...
## $ Gender : chr "Female" "Female" "Male" "Male" ...
## $ Gender.Code : chr "F" "F" "M" "M" ...
## $ Race : chr "Black or African American" "White" "Black or African American" "White" ...
## $ Race.Code : chr "2054-5" "2106-3" "2054-5" "2106-3" ...
## $ Deaths : int 2 4 3 12 1 3 1 4 8 2 ...
## $ Population : int 297942 1452001 307443 1528776 302401 1447232 84431 312650 1524372 316708 ...
## $ Crude.Rate : chr "0.7 (Unreliable)" "0.3 (Unreliable)" "1.0 (Unreliable)" "0.8 (Unreliable)" ...
The only immediate issues I see are that several columns have redundant information. Most of them are also currently character strings, whereas I’d prefer them to be factors. From the look of the first few entries in the character string columns, there’s no immediately apparent reason why they can’t be simply converted into factors. I’ll take a closer look later, but for now no problems are jumping out for those columns.
One potentially larger issue is that I’d like the crude death rate to be numeric, rather than a character string. Because that column contains a lot of non-numeric values, such as several cells being marked “Unreliable”, it won’t convert simply into a numeric value. Normally I’d want to remove those character strings or split them off into a different column. However, I don’t need to do that for this dataframe, because I don’t actually want this column of crude death rates at all. The crude rate is calculated by the formula “(Deaths * 100,000) / Population”. This means that the crude rates I have right now only work for this specific grouping of the data. If, for example, I wanted to examine the change in death rate across race and cause of death, but not across gender, I’d have to calculate new crude rates using the sum of the deaths and population for both men and women. In fact, the only reason I included the crude rate in my query was because it’s mandatory output for the CDC Wonder query system. So, instead of trying to convert this column to being numeric, I can simply remove it from the dataframe later on, and then calculate the death rates for the groups I’m interested in when I need them.
The fact that some of the rates are marked as unreliable also seems like it might be a problem for the validity of my analysis, but it’s also not an issue. The reason they’ve been marked as unreliable is because the CDC doesn’t consider a crude rate to be reliable when there are fewer than 20 deaths in the population. The sample size is too small for the number to be meaningful. The reason the number of deaths I have in each field is so low, however, is because I split each population into 14 different age groups. When I calculate the age-adjusted death rates, all those age groups will be added to each other, resulting in an age-adjusted death rate with a decent sample size.
As far as the redundant columns go, for several fields, such as the ICD sub-chapter, gender, year, age group, and race, the query system automatically outputs both a plain English version of the data and a reference code. This means I have a lot of columns with perfectly correlated information. I’ll deal with those in a moment, but before I do I want to make sure I don’t have any data cells marked as “NA” in the dataframe.
apply(df, 2, function(x) sum(is.na(x)))
## Notes ICD.Sub.Chapter ICD.Sub.Chapter.Code
## 0 0 0
## Year Year.Code Age.Group
## 756 756 0
## Age.Group.Code Gender Gender.Code
## 60 0 0
## Race Race.Code Deaths
## 0 0 756
## Population Crude.Rate
## 756 0
It looks like I have several NA values. The number of NA values in Year.Code, Year, Population, and Deaths are all the same, so it’s a fair bet that it’s the same rows containing NA values for each of them. There’s also a much smaller number of NA values in Age.Group.Code. I’ll subset both groups of NA values and examine them to try and see what the cause is.
age_group_na <- subset(df, subset = is.na(df$Age.Group.Code))
year_na <- subset(df, subset = is.na(df$Year))
kable(age_group_na, style = "html") %>%
kable_styling() %>%
scroll_box(width = "100%", height = "400px")
Notes | ICD.Sub.Chapter | ICD.Sub.Chapter.Code | Year | Year.Code | Age.Group | Age.Group.Code | Gender | Gender.Code | Race | Race.Code | Deaths | Population | Crude.Rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9352 | — | NA | NA | NA | NA | NA | ||||||||
9353 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | NA | ||||||||
9354 | Query Parameters: | NA | NA | NA | NA | NA | ||||||||
9355 | Title: mortality_1999-2016_<1 | NA | NA | NA | NA | NA | ||||||||
9356 | Age Group: < 1 year | NA | NA | NA | NA | NA | ||||||||
9357 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | NA | ||||||||
9358 | Show Totals: False | NA | NA | NA | NA | NA | ||||||||
9359 | Show Zero Values: False | NA | NA | NA | NA | NA | ||||||||
9360 | Show Suppressed: False | NA | NA | NA | NA | NA | ||||||||
9361 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | NA | ||||||||
9362 | — | NA | NA | NA | NA | NA | ||||||||
9363 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | NA | ||||||||
9364 | — | NA | NA | NA | NA | NA | ||||||||
9365 | Query Date: Sep 13, 2022 7:12:58 PM | NA | NA | NA | NA | NA | ||||||||
9366 | — | NA | NA | NA | NA | NA | ||||||||
9367 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | NA | ||||||||
9368 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | NA | ||||||||
9369 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | NA | ||||||||
9370 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | NA | ||||||||
9371 | 7:12:58 PM | NA | NA | NA | NA | NA | ||||||||
9372 | — | NA | NA | NA | NA | NA | ||||||||
9373 | Messages: | NA | NA | NA | NA | NA | ||||||||
9374 |
|
NA | NA | NA | NA | NA | ||||||||
9375 | — | NA | NA | NA | NA | NA | ||||||||
9376 | Caveats: | NA | NA | NA | NA | NA | ||||||||
9377 |
|
NA | NA | NA | NA | NA | ||||||||
9378 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | NA | ||||||||
9379 |
|
NA | NA | NA | NA | NA | ||||||||
9380 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | NA | ||||||||
9381 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | NA | ||||||||
9382 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | NA | ||||||||
9383 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | NA | ||||||||
9384 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | NA | ||||||||
9385 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | NA | ||||||||
9386 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | NA | ||||||||
9387 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | NA | ||||||||
9388 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | NA | ||||||||
9389 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | NA | ||||||||
9390 |
|
NA | NA | NA | NA | NA | ||||||||
9391 | resident population that is under one year of age. More information: http://wonder.cdc.gov/wonder/help/cmf.html#Age Group. | NA | NA | NA | NA | NA | ||||||||
9392 |
|
NA | NA | NA | NA | NA | ||||||||
9393 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | NA | ||||||||
9394 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | NA | ||||||||
9395 |
|
NA | NA | NA | NA | NA | ||||||||
9396 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | NA | ||||||||
9397 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | NA | ||||||||
9398 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | NA | ||||||||
9399 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | NA | ||||||||
9400 |
|
NA | NA | NA | NA | NA | ||||||||
9401 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | NA | ||||||||
9402 |
|
NA | NA | NA | NA | NA | ||||||||
9403 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | NA | ||||||||
9404 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | NA | ||||||||
9405 |
|
NA | NA | NA | NA | NA | ||||||||
9406 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | NA | ||||||||
9407 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | NA | ||||||||
9408 |
|
NA | NA | NA | NA | NA | ||||||||
9409 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | NA | ||||||||
9410 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | NA | ||||||||
9411 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | NA |
kable(year_na, style = "html") %>%
kable_styling() %>%
scroll_box(width = "100%", height = "400px")
Notes | ICD.Sub.Chapter | ICD.Sub.Chapter.Code | Year | Year.Code | Age.Group | Age.Group.Code | Gender | Gender.Code | Race | Race.Code | Deaths | Population | Crude.Rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9352 | — | NA | NA | NA | NA | NA | ||||||||
9353 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | NA | ||||||||
9354 | Query Parameters: | NA | NA | NA | NA | NA | ||||||||
9355 | Title: mortality_1999-2016_<1 | NA | NA | NA | NA | NA | ||||||||
9356 | Age Group: < 1 year | NA | NA | NA | NA | NA | ||||||||
9357 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | NA | ||||||||
9358 | Show Totals: False | NA | NA | NA | NA | NA | ||||||||
9359 | Show Zero Values: False | NA | NA | NA | NA | NA | ||||||||
9360 | Show Suppressed: False | NA | NA | NA | NA | NA | ||||||||
9361 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | NA | ||||||||
9362 | — | NA | NA | NA | NA | NA | ||||||||
9363 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | NA | ||||||||
9364 | — | NA | NA | NA | NA | NA | ||||||||
9365 | Query Date: Sep 13, 2022 7:12:58 PM | NA | NA | NA | NA | NA | ||||||||
9366 | — | NA | NA | NA | NA | NA | ||||||||
9367 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | NA | ||||||||
9368 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | NA | ||||||||
9369 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | NA | ||||||||
9370 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | NA | ||||||||
9371 | 7:12:58 PM | NA | NA | NA | NA | NA | ||||||||
9372 | — | NA | NA | NA | NA | NA | ||||||||
9373 | Messages: | NA | NA | NA | NA | NA | ||||||||
9374 |
|
NA | NA | NA | NA | NA | ||||||||
9375 | — | NA | NA | NA | NA | NA | ||||||||
9376 | Caveats: | NA | NA | NA | NA | NA | ||||||||
9377 |
|
NA | NA | NA | NA | NA | ||||||||
9378 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | NA | ||||||||
9379 |
|
NA | NA | NA | NA | NA | ||||||||
9380 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | NA | ||||||||
9381 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | NA | ||||||||
9382 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | NA | ||||||||
9383 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | NA | ||||||||
9384 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | NA | ||||||||
9385 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | NA | ||||||||
9386 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | NA | ||||||||
9387 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | NA | ||||||||
9388 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | NA | ||||||||
9389 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | NA | ||||||||
9390 |
|
NA | NA | NA | NA | NA | ||||||||
9391 | resident population that is under one year of age. More information: http://wonder.cdc.gov/wonder/help/cmf.html#Age Group. | NA | NA | NA | NA | NA | ||||||||
9392 |
|
NA | NA | NA | NA | NA | ||||||||
9393 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | NA | ||||||||
9394 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | NA | ||||||||
9395 |
|
NA | NA | NA | NA | NA | ||||||||
9396 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | NA | ||||||||
9397 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | NA | ||||||||
9398 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | NA | ||||||||
9399 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | NA | ||||||||
9400 |
|
NA | NA | NA | NA | NA | ||||||||
9401 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | NA | ||||||||
9402 |
|
NA | NA | NA | NA | NA | ||||||||
9403 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | NA | ||||||||
9404 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | NA | ||||||||
9405 |
|
NA | NA | NA | NA | NA | ||||||||
9406 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | NA | ||||||||
9407 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | NA | ||||||||
9408 |
|
NA | NA | NA | NA | NA | ||||||||
9409 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | NA | ||||||||
9410 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | NA | ||||||||
9411 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | NA | ||||||||
16420 | — | NA | NA | NA | NA | |||||||||
16421 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
16422 | Query Parameters: | NA | NA | NA | NA | |||||||||
16423 | Title: mortality_1999-2016_1-4 | NA | NA | NA | NA | |||||||||
16424 | Age Group: 1-4 years | NA | NA | NA | NA | |||||||||
16425 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
16426 | Show Totals: False | NA | NA | NA | NA | |||||||||
16427 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
16428 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
16429 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
16430 | — | NA | NA | NA | NA | |||||||||
16431 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
16432 | — | NA | NA | NA | NA | |||||||||
16433 | Query Date: Sep 13, 2022 7:15:39 PM | NA | NA | NA | NA | |||||||||
16434 | — | NA | NA | NA | NA | |||||||||
16435 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
16436 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
16437 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
16438 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
16439 | 7:15:39 PM | NA | NA | NA | NA | |||||||||
16440 | — | NA | NA | NA | NA | |||||||||
16441 | Messages: | NA | NA | NA | NA | |||||||||
16442 |
|
NA | NA | NA | NA | |||||||||
16443 | — | NA | NA | NA | NA | |||||||||
16444 | Caveats: | NA | NA | NA | NA | |||||||||
16445 |
|
NA | NA | NA | NA | |||||||||
16446 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
16447 |
|
NA | NA | NA | NA | |||||||||
16448 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
16449 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
16450 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
16451 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
16452 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
16453 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
16454 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
16455 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
16456 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
16457 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
16458 |
|
NA | NA | NA | NA | |||||||||
16459 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
16460 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
16461 |
|
NA | NA | NA | NA | |||||||||
16462 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
16463 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
16464 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
16465 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
16466 |
|
NA | NA | NA | NA | |||||||||
16467 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
16468 |
|
NA | NA | NA | NA | |||||||||
16469 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
16470 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
16471 |
|
NA | NA | NA | NA | |||||||||
16472 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
16473 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
16474 |
|
NA | NA | NA | NA | |||||||||
16475 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
16476 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
16477 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
21906 | — | NA | NA | NA | NA | |||||||||
21907 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
21908 | Query Parameters: | NA | NA | NA | NA | |||||||||
21909 | Title: mortality_1999-2016_5-9 | NA | NA | NA | NA | |||||||||
21910 | Age Group: 5-9 years | NA | NA | NA | NA | |||||||||
21911 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
21912 | Show Totals: False | NA | NA | NA | NA | |||||||||
21913 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
21914 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
21915 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
21916 | — | NA | NA | NA | NA | |||||||||
21917 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
21918 | — | NA | NA | NA | NA | |||||||||
21919 | Query Date: Sep 13, 2022 7:18:14 PM | NA | NA | NA | NA | |||||||||
21920 | — | NA | NA | NA | NA | |||||||||
21921 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
21922 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
21923 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
21924 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
21925 | 7:18:14 PM | NA | NA | NA | NA | |||||||||
21926 | — | NA | NA | NA | NA | |||||||||
21927 | Messages: | NA | NA | NA | NA | |||||||||
21928 |
|
NA | NA | NA | NA | |||||||||
21929 | — | NA | NA | NA | NA | |||||||||
21930 | Caveats: | NA | NA | NA | NA | |||||||||
21931 |
|
NA | NA | NA | NA | |||||||||
21932 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
21933 |
|
NA | NA | NA | NA | |||||||||
21934 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
21935 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
21936 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
21937 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
21938 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
21939 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
21940 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
21941 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
21942 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
21943 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
21944 |
|
NA | NA | NA | NA | |||||||||
21945 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
21946 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
21947 |
|
NA | NA | NA | NA | |||||||||
21948 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
21949 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
21950 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
21951 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
21952 |
|
NA | NA | NA | NA | |||||||||
21953 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
21954 |
|
NA | NA | NA | NA | |||||||||
21955 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
21956 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
21957 |
|
NA | NA | NA | NA | |||||||||
21958 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
21959 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
21960 |
|
NA | NA | NA | NA | |||||||||
21961 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
21962 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
21963 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
27869 | — | NA | NA | NA | NA | |||||||||
27870 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
27871 | Query Parameters: | NA | NA | NA | NA | |||||||||
27872 | Title: mortality_1999-2016_10-14 | NA | NA | NA | NA | |||||||||
27873 | Age Group: 10-14 years | NA | NA | NA | NA | |||||||||
27874 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
27875 | Show Totals: False | NA | NA | NA | NA | |||||||||
27876 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
27877 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
27878 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
27879 | — | NA | NA | NA | NA | |||||||||
27880 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
27881 | — | NA | NA | NA | NA | |||||||||
27882 | Query Date: Sep 13, 2022 7:20:31 PM | NA | NA | NA | NA | |||||||||
27883 | — | NA | NA | NA | NA | |||||||||
27884 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
27885 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
27886 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
27887 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
27888 | 7:20:31 PM | NA | NA | NA | NA | |||||||||
27889 | — | NA | NA | NA | NA | |||||||||
27890 | Messages: | NA | NA | NA | NA | |||||||||
27891 |
|
NA | NA | NA | NA | |||||||||
27892 | — | NA | NA | NA | NA | |||||||||
27893 | Caveats: | NA | NA | NA | NA | |||||||||
27894 |
|
NA | NA | NA | NA | |||||||||
27895 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
27896 |
|
NA | NA | NA | NA | |||||||||
27897 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
27898 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
27899 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
27900 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
27901 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
27902 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
27903 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
27904 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
27905 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
27906 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
27907 |
|
NA | NA | NA | NA | |||||||||
27908 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
27909 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
27910 |
|
NA | NA | NA | NA | |||||||||
27911 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
27912 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
27913 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
27914 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
27915 |
|
NA | NA | NA | NA | |||||||||
27916 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
27917 |
|
NA | NA | NA | NA | |||||||||
27918 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
27919 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
27920 |
|
NA | NA | NA | NA | |||||||||
27921 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
27922 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
27923 |
|
NA | NA | NA | NA | |||||||||
27924 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
27925 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
27926 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
35124 | — | NA | NA | NA | NA | |||||||||
35125 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
35126 | Query Parameters: | NA | NA | NA | NA | |||||||||
35127 | Title: mortality_1999-2016_15-19 | NA | NA | NA | NA | |||||||||
35128 | Age Group: 15-19 years | NA | NA | NA | NA | |||||||||
35129 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
35130 | Show Totals: False | NA | NA | NA | NA | |||||||||
35131 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
35132 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
35133 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
35134 | — | NA | NA | NA | NA | |||||||||
35135 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
35136 | — | NA | NA | NA | NA | |||||||||
35137 | Query Date: Sep 13, 2022 7:23:35 PM | NA | NA | NA | NA | |||||||||
35138 | — | NA | NA | NA | NA | |||||||||
35139 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
35140 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
35141 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
35142 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
35143 | 7:23:35 PM | NA | NA | NA | NA | |||||||||
35144 | — | NA | NA | NA | NA | |||||||||
35145 | Messages: | NA | NA | NA | NA | |||||||||
35146 |
|
NA | NA | NA | NA | |||||||||
35147 | — | NA | NA | NA | NA | |||||||||
35148 | Caveats: | NA | NA | NA | NA | |||||||||
35149 |
|
NA | NA | NA | NA | |||||||||
35150 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
35151 |
|
NA | NA | NA | NA | |||||||||
35152 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
35153 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
35154 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
35155 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
35156 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
35157 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
35158 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
35159 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
35160 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
35161 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
35162 |
|
NA | NA | NA | NA | |||||||||
35163 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
35164 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
35165 |
|
NA | NA | NA | NA | |||||||||
35166 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
35167 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
35168 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
35169 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
35170 |
|
NA | NA | NA | NA | |||||||||
35171 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
35172 |
|
NA | NA | NA | NA | |||||||||
35173 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
35174 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
35175 |
|
NA | NA | NA | NA | |||||||||
35176 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
35177 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
35178 |
|
NA | NA | NA | NA | |||||||||
35179 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
35180 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
35181 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
43605 | — | NA | NA | NA | NA | |||||||||
43606 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
43607 | Query Parameters: | NA | NA | NA | NA | |||||||||
43608 | Title: mortality_1999-2016_20-24 | NA | NA | NA | NA | |||||||||
43609 | Age Group: 20-24 years | NA | NA | NA | NA | |||||||||
43610 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
43611 | Show Totals: False | NA | NA | NA | NA | |||||||||
43612 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
43613 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
43614 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
43615 | — | NA | NA | NA | NA | |||||||||
43616 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
43617 | — | NA | NA | NA | NA | |||||||||
43618 | Query Date: Sep 13, 2022 7:26:38 PM | NA | NA | NA | NA | |||||||||
43619 | — | NA | NA | NA | NA | |||||||||
43620 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
43621 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
43622 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
43623 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
43624 | 7:26:38 PM | NA | NA | NA | NA | |||||||||
43625 | — | NA | NA | NA | NA | |||||||||
43626 | Messages: | NA | NA | NA | NA | |||||||||
43627 |
|
NA | NA | NA | NA | |||||||||
43628 | — | NA | NA | NA | NA | |||||||||
43629 | Caveats: | NA | NA | NA | NA | |||||||||
43630 |
|
NA | NA | NA | NA | |||||||||
43631 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
43632 |
|
NA | NA | NA | NA | |||||||||
43633 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
43634 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
43635 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
43636 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
43637 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
43638 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
43639 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
43640 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
43641 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
43642 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
43643 |
|
NA | NA | NA | NA | |||||||||
43644 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
43645 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
43646 |
|
NA | NA | NA | NA | |||||||||
43647 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
43648 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
43649 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
43650 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
43651 |
|
NA | NA | NA | NA | |||||||||
43652 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
43653 |
|
NA | NA | NA | NA | |||||||||
43654 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
43655 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
43656 |
|
NA | NA | NA | NA | |||||||||
43657 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
43658 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
43659 |
|
NA | NA | NA | NA | |||||||||
43660 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
43661 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
43662 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
54907 | — | NA | NA | NA | NA | |||||||||
54908 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
54909 | Query Parameters: | NA | NA | NA | NA | |||||||||
54910 | Title: mortality_1999-2016_25-34 | NA | NA | NA | NA | |||||||||
54911 | Age Group: 25-34 years | NA | NA | NA | NA | |||||||||
54912 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
54913 | Show Totals: False | NA | NA | NA | NA | |||||||||
54914 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
54915 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
54916 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
54917 | — | NA | NA | NA | NA | |||||||||
54918 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
54919 | — | NA | NA | NA | NA | |||||||||
54920 | Query Date: Sep 13, 2022 4:22:07 PM | NA | NA | NA | NA | |||||||||
54921 | — | NA | NA | NA | NA | |||||||||
54922 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
54923 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
54924 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
54925 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
54926 | 4:22:07 PM | NA | NA | NA | NA | |||||||||
54927 | — | NA | NA | NA | NA | |||||||||
54928 | Messages: | NA | NA | NA | NA | |||||||||
54929 |
|
NA | NA | NA | NA | |||||||||
54930 | — | NA | NA | NA | NA | |||||||||
54931 | Caveats: | NA | NA | NA | NA | |||||||||
54932 |
|
NA | NA | NA | NA | |||||||||
54933 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
54934 |
|
NA | NA | NA | NA | |||||||||
54935 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
54936 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
54937 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
54938 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
54939 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
54940 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
54941 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
54942 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
54943 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
54944 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
54945 |
|
NA | NA | NA | NA | |||||||||
54946 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
54947 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
54948 |
|
NA | NA | NA | NA | |||||||||
54949 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
54950 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
54951 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
54952 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
54953 |
|
NA | NA | NA | NA | |||||||||
54954 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
54955 |
|
NA | NA | NA | NA | |||||||||
54956 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
54957 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
54958 |
|
NA | NA | NA | NA | |||||||||
54959 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
54960 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
54961 |
|
NA | NA | NA | NA | |||||||||
54962 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
54963 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
54964 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
67559 | — | NA | NA | NA | NA | |||||||||
67560 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
67561 | Query Parameters: | NA | NA | NA | NA | |||||||||
67562 | Title: mortality_1999-2016_35-44 | NA | NA | NA | NA | |||||||||
67563 | Age Group: 35-44 years | NA | NA | NA | NA | |||||||||
67564 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
67565 | Show Totals: False | NA | NA | NA | NA | |||||||||
67566 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
67567 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
67568 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
67569 | — | NA | NA | NA | NA | |||||||||
67570 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
67571 | — | NA | NA | NA | NA | |||||||||
67572 | Query Date: Sep 13, 2022 4:06:23 PM | NA | NA | NA | NA | |||||||||
67573 | — | NA | NA | NA | NA | |||||||||
67574 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
67575 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
67576 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
67577 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
67578 | 4:06:23 PM | NA | NA | NA | NA | |||||||||
67579 | — | NA | NA | NA | NA | |||||||||
67580 | Messages: | NA | NA | NA | NA | |||||||||
67581 |
|
NA | NA | NA | NA | |||||||||
67582 | — | NA | NA | NA | NA | |||||||||
67583 | Caveats: | NA | NA | NA | NA | |||||||||
67584 |
|
NA | NA | NA | NA | |||||||||
67585 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
67586 |
|
NA | NA | NA | NA | |||||||||
67587 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
67588 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
67589 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
67590 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
67591 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
67592 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
67593 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
67594 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
67595 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
67596 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
67597 |
|
NA | NA | NA | NA | |||||||||
67598 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
67599 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
67600 |
|
NA | NA | NA | NA | |||||||||
67601 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
67602 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
67603 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
67604 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
67605 |
|
NA | NA | NA | NA | |||||||||
67606 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
67607 |
|
NA | NA | NA | NA | |||||||||
67608 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
67609 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
67610 |
|
NA | NA | NA | NA | |||||||||
67611 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
67612 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
67613 |
|
NA | NA | NA | NA | |||||||||
67614 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
67615 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
67616 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
81333 | — | NA | NA | NA | NA | |||||||||
81334 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
81335 | Query Parameters: | NA | NA | NA | NA | |||||||||
81336 | Title: mortality_1999-2016_45-54 | NA | NA | NA | NA | |||||||||
81337 | Age Group: 45-54 years | NA | NA | NA | NA | |||||||||
81338 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
81339 | Show Totals: False | NA | NA | NA | NA | |||||||||
81340 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
81341 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
81342 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
81343 | — | NA | NA | NA | NA | |||||||||
81344 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
81345 | — | NA | NA | NA | NA | |||||||||
81346 | Query Date: Sep 13, 2022 4:03:48 PM | NA | NA | NA | NA | |||||||||
81347 | — | NA | NA | NA | NA | |||||||||
81348 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
81349 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
81350 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
81351 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
81352 | 4:03:48 PM | NA | NA | NA | NA | |||||||||
81353 | — | NA | NA | NA | NA | |||||||||
81354 | Messages: | NA | NA | NA | NA | |||||||||
81355 |
|
NA | NA | NA | NA | |||||||||
81356 | — | NA | NA | NA | NA | |||||||||
81357 | Caveats: | NA | NA | NA | NA | |||||||||
81358 |
|
NA | NA | NA | NA | |||||||||
81359 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
81360 |
|
NA | NA | NA | NA | |||||||||
81361 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
81362 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
81363 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
81364 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
81365 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
81366 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
81367 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
81368 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
81369 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
81370 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
81371 |
|
NA | NA | NA | NA | |||||||||
81372 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
81373 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
81374 |
|
NA | NA | NA | NA | |||||||||
81375 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
81376 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
81377 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
81378 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
81379 |
|
NA | NA | NA | NA | |||||||||
81380 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
81381 |
|
NA | NA | NA | NA | |||||||||
81382 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
81383 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
81384 |
|
NA | NA | NA | NA | |||||||||
81385 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
81386 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
81387 |
|
NA | NA | NA | NA | |||||||||
81388 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
81389 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
81390 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
95555 | — | NA | NA | NA | NA | |||||||||
95556 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
95557 | Query Parameters: | NA | NA | NA | NA | |||||||||
95558 | Title: mortality_1999-2016_55-64 | NA | NA | NA | NA | |||||||||
95559 | Age Group: 55-64 years | NA | NA | NA | NA | |||||||||
95560 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
95561 | Show Totals: False | NA | NA | NA | NA | |||||||||
95562 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
95563 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
95564 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
95565 | — | NA | NA | NA | NA | |||||||||
95566 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
95567 | — | NA | NA | NA | NA | |||||||||
95568 | Query Date: Sep 13, 2022 4:01:53 PM | NA | NA | NA | NA | |||||||||
95569 | — | NA | NA | NA | NA | |||||||||
95570 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
95571 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
95572 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
95573 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
95574 | 4:01:53 PM | NA | NA | NA | NA | |||||||||
95575 | — | NA | NA | NA | NA | |||||||||
95576 | Messages: | NA | NA | NA | NA | |||||||||
95577 |
|
NA | NA | NA | NA | |||||||||
95578 | — | NA | NA | NA | NA | |||||||||
95579 | Caveats: | NA | NA | NA | NA | |||||||||
95580 |
|
NA | NA | NA | NA | |||||||||
95581 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
95582 |
|
NA | NA | NA | NA | |||||||||
95583 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
95584 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
95585 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
95586 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
95587 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
95588 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
95589 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
95590 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
95591 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
95592 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
95593 |
|
NA | NA | NA | NA | |||||||||
95594 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
95595 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
95596 |
|
NA | NA | NA | NA | |||||||||
95597 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
95598 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
95599 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
95600 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
95601 |
|
NA | NA | NA | NA | |||||||||
95602 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
95603 |
|
NA | NA | NA | NA | |||||||||
95604 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
95605 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
95606 |
|
NA | NA | NA | NA | |||||||||
95607 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
95608 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
95609 |
|
NA | NA | NA | NA | |||||||||
95610 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
95611 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
95612 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
109990 | — | NA | NA | NA | NA | |||||||||
109991 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
109992 | Query Parameters: | NA | NA | NA | NA | |||||||||
109993 | Title: mortality_1999-2016_65-74 | NA | NA | NA | NA | |||||||||
109994 | Age Group: 65-74 years | NA | NA | NA | NA | |||||||||
109995 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
109996 | Show Totals: False | NA | NA | NA | NA | |||||||||
109997 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
109998 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
109999 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
110000 | — | NA | NA | NA | NA | |||||||||
110001 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
110002 | — | NA | NA | NA | NA | |||||||||
110003 | Query Date: Sep 13, 2022 3:59:35 PM | NA | NA | NA | NA | |||||||||
110004 | — | NA | NA | NA | NA | |||||||||
110005 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
110006 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
110007 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
110008 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
110009 | 3:59:35 PM | NA | NA | NA | NA | |||||||||
110010 | — | NA | NA | NA | NA | |||||||||
110011 | Messages: | NA | NA | NA | NA | |||||||||
110012 |
|
NA | NA | NA | NA | |||||||||
110013 | — | NA | NA | NA | NA | |||||||||
110014 | Caveats: | NA | NA | NA | NA | |||||||||
110015 |
|
NA | NA | NA | NA | |||||||||
110016 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
110017 |
|
NA | NA | NA | NA | |||||||||
110018 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
110019 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
110020 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
110021 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
110022 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
110023 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
110024 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
110025 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
110026 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
110027 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
110028 |
|
NA | NA | NA | NA | |||||||||
110029 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
110030 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
110031 |
|
NA | NA | NA | NA | |||||||||
110032 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
110033 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
110034 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
110035 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
110036 |
|
NA | NA | NA | NA | |||||||||
110037 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
110038 |
|
NA | NA | NA | NA | |||||||||
110039 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
110040 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
110041 |
|
NA | NA | NA | NA | |||||||||
110042 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
110043 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
110044 |
|
NA | NA | NA | NA | |||||||||
110045 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
110046 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
110047 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
124533 | — | NA | NA | NA | NA | |||||||||
124534 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
124535 | Query Parameters: | NA | NA | NA | NA | |||||||||
124536 | Title: mortality_1999-2016_75-84 | NA | NA | NA | NA | |||||||||
124537 | Age Group: 75-84 years | NA | NA | NA | NA | |||||||||
124538 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
124539 | Show Totals: False | NA | NA | NA | NA | |||||||||
124540 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
124541 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
124542 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
124543 | — | NA | NA | NA | NA | |||||||||
124544 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
124545 | — | NA | NA | NA | NA | |||||||||
124546 | Query Date: Sep 13, 2022 3:57:48 PM | NA | NA | NA | NA | |||||||||
124547 | — | NA | NA | NA | NA | |||||||||
124548 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
124549 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
124550 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
124551 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
124552 | 3:57:48 PM | NA | NA | NA | NA | |||||||||
124553 | — | NA | NA | NA | NA | |||||||||
124554 | Messages: | NA | NA | NA | NA | |||||||||
124555 |
|
NA | NA | NA | NA | |||||||||
124556 | — | NA | NA | NA | NA | |||||||||
124557 | Caveats: | NA | NA | NA | NA | |||||||||
124558 |
|
NA | NA | NA | NA | |||||||||
124559 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
124560 |
|
NA | NA | NA | NA | |||||||||
124561 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
124562 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
124563 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
124564 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
124565 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
124566 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
124567 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
124568 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
124569 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
124570 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
124571 |
|
NA | NA | NA | NA | |||||||||
124572 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
124573 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
124574 |
|
NA | NA | NA | NA | |||||||||
124575 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
124576 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
124577 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
124578 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
124579 |
|
NA | NA | NA | NA | |||||||||
124580 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
124581 |
|
NA | NA | NA | NA | |||||||||
124582 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
124583 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
124584 |
|
NA | NA | NA | NA | |||||||||
124585 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
124586 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
124587 |
|
NA | NA | NA | NA | |||||||||
124588 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
124589 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
124590 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
138363 | — | NA | NA | NA | NA | |||||||||
138364 | Dataset: Compressed Mortality, 1999-2016 | NA | NA | NA | NA | |||||||||
138365 | Query Parameters: | NA | NA | NA | NA | |||||||||
138366 | Title: mortality_1999-2016_85+ | NA | NA | NA | NA | |||||||||
138367 | Age Group: 85+ years | NA | NA | NA | NA | |||||||||
138368 | Group By: ICD Sub-Chapter; Year; Age Group; Gender; Race | NA | NA | NA | NA | |||||||||
138369 | Show Totals: False | NA | NA | NA | NA | |||||||||
138370 | Show Zero Values: False | NA | NA | NA | NA | |||||||||
138371 | Show Suppressed: False | NA | NA | NA | NA | |||||||||
138372 | Calculate Rates Per: 100,000 | NA | NA | NA | NA | |||||||||
138373 | — | NA | NA | NA | NA | |||||||||
138374 | Help: See http://wonder.cdc.gov/wonder/help/cmf.html for more information. | NA | NA | NA | NA | |||||||||
138375 | — | NA | NA | NA | NA | |||||||||
138376 | Query Date: Sep 13, 2022 3:54:39 PM | NA | NA | NA | NA | |||||||||
138377 | — | NA | NA | NA | NA | |||||||||
138378 | Suggested Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics | NA | NA | NA | NA | |||||||||
138379 | System, Mortality: Compressed Mortality File 1999-2016 on CDC WONDER Online Database, released June 2017. Data are from the | NA | NA | NA | NA | |||||||||
138380 | Compressed Mortality File 1999-2016 Series 20 No. 2U, 2016, as compiled from data provided by the 57 vital statistics | NA | NA | NA | NA | |||||||||
138381 | jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/cmf-icd10.html on Sep 13, 2022 | NA | NA | NA | NA | |||||||||
138382 | 3:54:39 PM | NA | NA | NA | NA | |||||||||
138383 | — | NA | NA | NA | NA | |||||||||
138384 | Messages: | NA | NA | NA | NA | |||||||||
138385 |
|
NA | NA | NA | NA | |||||||||
138386 | — | NA | NA | NA | NA | |||||||||
138387 | Caveats: | NA | NA | NA | NA | |||||||||
138388 |
|
NA | NA | NA | NA | |||||||||
138389 | http://wonder.cdc.gov/wonder/help/cmf.html#Unreliable. | NA | NA | NA | NA | |||||||||
138390 |
|
NA | NA | NA | NA | |||||||||
138391 | estimates of the July 1 resident population; population figures for 2000 and 2010 are bridged-race April 1 census counts; | NA | NA | NA | NA | |||||||||
138392 | population figures for 2001-2009 are from the revised 2000-2009 series of bridged-race intercensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
138393 | resident population; population figures for 2011 are bridged-race postcensal estimates of the July 1 resident population, from | NA | NA | NA | NA | |||||||||
138394 | the Vintage 2011 series released by NCHS on July 18, 2012; population figures for 2012 are bridged-race postcensal estimates of | NA | NA | NA | NA | |||||||||
138395 | the July 1 resident population, from the Vintage 2012 series released by NCHS on June 13, 2013; population figures for 2013 are | NA | NA | NA | NA | |||||||||
138396 | bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2013 series released by NCHS on June 26, | NA | NA | NA | NA | |||||||||
138397 | 2014; population figures for 2014 are bridged-race postcensal estimates of the July 1 resident population, from the Vintage 2014 | NA | NA | NA | NA | |||||||||
138398 | series released by NCHS on June 30, 2015. and population figures for 2015 are bridged-race postcensal estimates of the July 1 | NA | NA | NA | NA | |||||||||
138399 | resident population, from the Vintage 2015 series released by NCHS on June 28, 2016. More information: | NA | NA | NA | NA | |||||||||
138400 | http://wonder.cdc.gov/wonder/help/cmf.html#Population Information. | NA | NA | NA | NA | |||||||||
138401 |
|
NA | NA | NA | NA | |||||||||
138402 | so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. More information: | NA | NA | NA | NA | |||||||||
138403 | http://wonder.cdc.gov/wonder/help/cmf.html#Not Stated. | NA | NA | NA | NA | |||||||||
138404 |
|
NA | NA | NA | NA | |||||||||
138405 | funeral director as provided by an informant, often the surviving next of kin, or, in the absence of an informant, on the basis | NA | NA | NA | NA | |||||||||
138406 | of observation. Race and ethnicity information from the census is by self-report. To the extent that race and Hispanic origin | NA | NA | NA | NA | |||||||||
138407 | are inconsistent between these two data sources, death rates will be biased. More information: | NA | NA | NA | NA | |||||||||
138408 | http://wonder.cdc.gov/wonder/help/cmf.html#Racial Differences. | NA | NA | NA | NA | |||||||||
138409 |
|
NA | NA | NA | NA | |||||||||
138410 | http://wonder.cdc.gov/wonder/help/cmf.html#2014-Revision. | NA | NA | NA | NA | |||||||||
138411 |
|
NA | NA | NA | NA | |||||||||
138412 | ill-defined and unspecified causes of mortality” for deaths occurring in years 2000 and 2001. Caution should be used in | NA | NA | NA | NA | |||||||||
138413 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#California-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
138414 |
|
NA | NA | NA | NA | |||||||||
138415 | code R99, “Other ill-defined and unspecified causes of mortality.” Caution should be used in interpreting these data. More | NA | NA | NA | NA | |||||||||
138416 | information: http://wonder.cdc.gov/wonder/help/cmf.html#Georgia-Reporting-Anomalies. | NA | NA | NA | NA | |||||||||
138417 |
|
NA | NA | NA | NA | |||||||||
138418 | R99, “Other ill-defined and unspecified causes of mortality” and therefore unusually low death counts in other ICD-10 codes, | NA | NA | NA | NA | |||||||||
138419 | most notably R95, “Sudden Infant Death Syndrome” and X40-X49, “Unintentional poisoning.” Caution should be used in | NA | NA | NA | NA | |||||||||
138420 | interpreting these data. More information: http://wonder.cdc.gov/wonder/help/cmf.html#New-Jersey-Reporting-Anomalies. | NA | NA | NA | NA |
It looks like the Notes column of each query I made contains information about the dataset and the query used to generate it. Every other column is either empty or NA for those rows. For some reason the Age.Group.Code column came back as NA for one query but blank for all the others, which is why it had only 60 NA values. This means I can simply remove all the NA values from the main dataframe, as they all contain no data. It’s a little concerning that this happened, and makes me wonder if I accidentally changed something on one of my 14 queries. Fortunately, the notes fields for these NA values includes a description of each query, and I can verify that the query structure of the oddball query is the same as all the other ones. However, the oddball query is for the <1 year old age group. The query system allows for examination of further infant ranges inside the <1 group, so my best guess is that the existence of this subset of age groups inside the <1 age group is the cause of the minor difference in how the query system output the data here.
Regardless, it looks like I should simply be able to delete these rows, as they contain no actual data. The fact that they contain information on the nature of each exact query, and some of the documentation for the dataset is useful. Conveniently, having just subset those rows into a new dataframe, I’ll still have access to them if I need them, even after removing them from the main dataframe.
df <- subset(df, subset = !is.na(df$Year))
With the NA values taken care of, I also want to check to see if there are any other empty cells in the dataframe.
apply(df, 2, function(x) sum(x == ""))
## Notes ICD.Sub.Chapter ICD.Sub.Chapter.Code
## 137664 0 0
## Year Year.Code Age.Group
## 0 0 0
## Age.Group.Code Gender Gender.Code
## 0 0 0
## Race Race.Code Deaths
## 0 0 0
## Population Crude.Rate
## 0 0
There are 137,664 empty cells in the Notes column. I know from earlier that the dataframe used to have 138,420 rows, and I just deleted 756, so our dataframe is currently 137,664 rows long. In other words, every cell in the Notes column is empty, so I can feel free to delete the entire column later on when I prune the dataframe down.
Now that the data appears to be fairly clean, I actually want to add a new column. For my analysis, I know that I’m going to want to first look at ICD chapter, rather than ICD sub-chapter. That way I can get a general idea of what the data looks like, then more narrowly examine areas of interest when they come up. Unfortunately, the CDC query system only allows for the data to be grouped by five different fields, and I used all five on sub-chapter, year, race, gender, and age. Fortunately, the system the ICD uses for chapter and sub-chapter codes is simple. The individual cause of death codes are a letter and two digits ranging from A00 to Z99. The code for a chapter is simply a range of values (e.g. “A00-B99”). The code for a sub-chapter is the same, just with a narrower range (e.g. “A00-A09”, “A16-A19”, etc). I already have the sub-chapter ranges, so in order to get a column of chapter ranges, I just need to make a new column and fill each cell with the ICD chapter codes that encompass the sub-chapter range.
To start, I want to define a new dataframe that includes both the chapter codes and short versions of the titles for each chapter in the ICD 10. Fortunately the WHO maintains a webpage with details on the ICD 10 I can use to get this information. Once I have the dataframe with the ICD chapter codes, I’m going to join the codes to the main dataframe. Most R functions for joining dataframes that I know of don’t have the kind of inequality join I need to do this, so I’m going to load in the “sqldf” library to write an SQL join query instead.
# Make ICD Chapter and Chapter Code dataframe
icd_key <- data.frame(
ICD.Chapter.Code = c(
"A00-B99",
"C00-D48",
"D50-D89",
"E00-E90",
"F00-F99",
"G00-G99",
"H00-H59",
"H60-H95",
"I00-I99",
"J00-J99",
"K00-K93",
"L00-L99",
"M00-M99",
"N00-N99",
"O00-O99",
"P00-P96",
"Q00-Q99",
"R00-R99",
"S00-T98",
"V01-Y98",
"Z00-Z99",
"U00-U99"
),
ICD.Chapter = c(
"Parasitic/Infectious Diseases",
"Neoplasms",
"Blood Diseases",
"Endocrine Diseases",
"Mental Disorders",
"Nervous System Diseases",
"Eye Diseases",
"Ear Diseases",
"Circulatory Diseases",
"Respiratory Diseases",
"Digestive Diseases",
"Skin Diseases",
"Musculoskeletal Diseases",
"Genitourinary Diseases",
"Pregnancy/Childbirth",
"Perinatal Conditions",
"Congenital Malformations",
"Not Classified Elsewhere",
"Consequences of External Causes",
"External Causes",
"Healthcare Factors",
"Special Purposes"
)
)
# Join ICD Chapter Codes to dataframe
library(sqldf)
df <- sqldf("SELECT df.*, icd_key.'ICD.Chapter.Code'
FROM df
JOIN icd_key ON
LEFTSTR(df.'ICD.Sub.Chapter.Code', 3) >=
LEFTSTR(icd_key.'ICD.Chapter.Code', 3)
AND LEFTSTR(df.'ICD.Sub.Chapter.Code', 3) <=
RIGHTSTR(icd_key.'ICD.Chapter.Code', 3)")
Next I want to make some changes to the data structure. I want the age group, gender, race, ICD chapter and ICD sub-chapter data to be factors, rather than character strings. Before I make any conversions, I want to make sure there aren’t any unexpected values in any of those columns that will wind up being coerced to NA if I try to convert to factor, or give me weird factor levels I didn’t expect.
unique(df$ICD.Chapter.Code)
## [1] "A00-B99" "C00-D48" "D50-D89" "E00-E90" "F00-F99" "G00-G99" "H00-H59"
## [8] "H60-H95" "I00-I99" "J00-J99" "K00-K93" "L00-L99" "M00-M99" "N00-N99"
## [15] "P00-P96" "Q00-Q99" "R00-R99" "V01-Y98" "U00-U99" "O00-O99"
unique(df$ICD.Sub.Chapter.Code)
## [1] "A00-A09" "A16-A19" "A20-A28" "A30-A49" "A50-A64" "A70-A74" "A80-A89"
## [8] "A90-A99" "B00-B09" "B15-B19" "B20-B24" "B25-B34" "B35-B49" "B50-B64"
## [15] "B99-B99" "C00-C97" "D10-D36" "D37-D48" "D50-D53" "D55-D59" "D60-D64"
## [22] "D65-D69" "D70-D76" "D80-D89" "E00-E07" "E10-E14" "E15-E16" "E20-E34"
## [29] "E40-E46" "E50-E64" "E65-E68" "E70-E88" "F01-F09" "F10-F19" "F30-F39"
## [36] "F40-F48" "F70-F79" "F80-F89" "F90-F98" "G00-G09" "G10-G14" "G20-G25"
## [43] "G30-G31" "G35-G37" "G40-G47" "G50-G58" "G60-G64" "G70-G72" "G80-G83"
## [50] "G90-G98" "H10-H11" "H15-H21" "H25-H27" "H30-H35" "H40-H40" "H43-H44"
## [57] "H53-H54" "H65-H74" "H80-H83" "H90-H93" "I05-I09" "I10-I15" "I20-I25"
## [64] "I26-I28" "I30-I51" "I60-I69" "I70-I78" "I80-I89" "I95-I99" "J00-J06"
## [71] "J09-J18" "J20-J22" "J30-J39" "J40-J47" "J60-J70" "J80-J84" "J85-J86"
## [78] "J90-J94" "J96-J98" "K00-K14" "K20-K31" "K35-K38" "K40-K46" "K50-K52"
## [85] "K55-K63" "K65-K66" "K70-K76" "K80-K86" "K90-K92" "L00-L08" "L20-L30"
## [92] "L50-L53" "L80-L98" "M00-M25" "M30-M35" "M40-M54" "M60-M79" "M80-M94"
## [99] "M95-M99" "N00-N07" "N10-N15" "N17-N19" "N20-N23" "N25-N28" "N30-N39"
## [106] "N40-N50" "N70-N76" "N80-N98" "P00-P04" "P05-P08" "P10-P15" "P20-P29"
## [113] "P35-P39" "P50-P61" "P70-P74" "P76-P78" "P80-P83" "P90-P96" "Q00-Q07"
## [120] "Q10-Q18" "Q20-Q28" "Q30-Q34" "Q35-Q37" "Q38-Q45" "Q50-Q56" "Q60-Q64"
## [127] "Q65-Q79" "Q80-Q89" "Q90-Q99" "R00-R09" "R10-R19" "R20-R23" "R25-R29"
## [134] "R40-R46" "R47-R49" "R50-R68" "R70-R79" "R90-R94" "R95-R99" "V01-V99"
## [141] "W00-X59" "X85-Y09" "Y10-Y34" "Y35-Y36" "Y40-Y84" "A65-A69" "A75-A79"
## [148] "B65-B83" "B90-B94" "F20-F29" "F60-F69" "H49-H52" "H55-H57" "I00-I02"
## [155] "L40-L44" "L55-L59" "L60-L75" "U00-U49" "Y85-Y89" "D00-D09" "F50-F59"
## [162] "F99-F99" "H00-H05" "L10-L13" "X60-X84" "B85-B89" "H46-H47" "O00-O07"
## [169] "O10-O16" "O20-O29" "O30-O48" "O60-O75" "O95-O99" "O85-O92" "N60-N64"
## [176] "H60-H61" "R80-R82" "R30-R39" "R83-R89"
unique(df$Age.Group.Code)
## [1] "1" "1-4" "5-9" "10-14" "15-19" "20-24" "25-34" "35-44" "45-54"
## [10] "55-64" "65-74" "75-84" "85+"
unique(df$Gender.Code)
## [1] "F" "M"
unique(df$Race.Code)
## [1] "2054-5" "2106-3" "A-PI" "1002-5"
It doesn’t look like there are any nasty surprises hidden in the data, so I can go ahead and convert these columns to factors.
factors <- c("ICD.Chapter.Code",
"ICD.Sub.Chapter.Code",
"Age.Group.Code",
"Gender.Code",
"Race.Code")
df[,factors] <- lapply(df[,factors], factor)
The next thing I want to fix is that I have too many different sub-groups for age. I’ve mentioned a few times that I have 14 different age groups. However, there are only 11 age group weights to use when doing the age adjustment. This is because the age weights use the groups “5-14 years” and “15-24 years”, while our dataset has the groups “5-9 years,” “10-14 years,” “15-19 years,” and “20-24 years”. This means I have four age groups that I want to collapse into two age groups, summing together the deaths and population. To start, I’ll rename the age groups in my dataframe to match the weights used to calculate age adjustments.
df$Age.Group <- gsub("(5-9 years)|(10-14 years)", "5-14 years", df$Age.Group)
df$Age.Group <- gsub("(15-19 years)|(20-24 years)", "15-24 years", df$Age.Group)
df$Age.Group.Code <- fct_collapse(
df$Age.Group.Code,
`5-14` = c("5-9", "10-14"),
`15-24` = c("15-19", "20-24")
)
Now my factor levels match the ones I need, but I have two different “5-14” and “15-24” rows for each group. I’ll sum those rows together shortly, but it’ll be a simpler operation if I remove the redundant columns from my dataset first. In general, I want to keep the “.Code” columns, because their version of the data is much shorter, which makes it easier to type, and makes the code easier to read (with the exception of the Year.Code column, which is identical to the regular Year column in every way). However, when visualizing the data, I’ll want more descriptive labels, closer to what’s in the plain English columns. Instead of deleting the plain English columns outright, I’m going to set up a relational structure by making several new dataframes that match the “.Code” version of each factor level to the plain English version. That way I can reference the plain English description of each variable level whenever I need it, but it doesn’t clog up the dataframe, or require overly long strings to filter the data.
gender_key <- unique(df[, c("Gender.Code", "Gender")])
age_key <- unique(df[, c("Age.Group.Code", "Age.Group")])
icd_sub_key <- unique(
x = df[, c("ICD.Chapter.Code", "ICD.Sub.Chapter.Code", "ICD.Sub.Chapter")]
)
race_key <- unique(df[, c("Race.Code", "Race")])
# Sort keys alphabetically where not already alphabetical
race_key <- arrange(race_key, Race.Code)
icd_key <- arrange(icd_key, ICD.Chapter.Code)
icd_sub_key <- arrange(icd_sub_key, ICD.Sub.Chapter.Code)
Now that I’ve made sure I have all the information about what each column means somewhere, I can go ahead and delete the redundant columns. Additionally, I noted earlier I wanted to remove the Notes and Crude.Rate columns. In addition, the Year.Code column is the same as the Year column, so I certainly don’t need both. “Year” is a lot easier to type than “Year.Code”, so I’ll be removing the latter. I’d also like the ICD.Chapter.Code column to appear as the first column, rather than the last column as it current does.
# Remove unwanted columns
df <- subset(df, select = -c(1, 2, 5, 6, 8, 10, 14))
# Put ICD.Chapter.Code first
df <- select(df, ICD.Chapter.Code, everything())
Finally, I need to sum across the 5-14 and 15-24 age groups that I created earlier.
df <- df %>%
group_by(
ICD.Chapter.Code,
ICD.Sub.Chapter.Code,
Year,
Age.Group.Code,
Gender.Code,
Race.Code
) %>%
summarize_all(sum) %>%
ungroup()
Now that my dataframe is clean and easy to work with, I can start having some fun with data!
As I mentioned earlier, I want to look at age-adjusted death rates, rather than just the crude death rate. To calculate the age-adjusted mortality rate itself is fairly simple. You multiply the crude death rate for each individual age group by the age weight, and then add each of those results together. When I queried the data, I could have actually had the age-adjusted mortality rates included but, as with the crude rate, I want to define the groups of interest myself and calculate their specific age-adjusted rates.
The first thing I want to do is add the age weights to the age group dataframe I made earlier. In fact, because the age group and age group code are so similar, and I’m not planning to report on any age values, the main reason I made this dataframe to begin with was to have a place to put these age weights. The only other reason to have it is as a reminder that the age group code “1” actually means “<1”.
age_key$Age.Weight <- c(0.013818, # <1
0.055317, # 1-4
0.145565, # 5-14
0.138646, # 15-24
0.135573, # 25-34
0.162613, # 35-44
0.134834, # 45-54
0.087247, # 55-64
0.066037, # 65-74
0.044842, # 75-84
0.015508 # >=85
)
If I’m going to make a lot of different figures based on different groupings of people, I’m also going to want a way to easily and quickly calculate the age-adjusted mortality rates by group. That means I need to write a function that outputs just that. It should allow me to work out the age-adjusted mortality rates for the populations I want in just a few commands and pipe the results into a figure.
# Function takes the name of the dataframe, then the name(s) of any grouping
# variables of interest
age_adjust <- function(X, ...){
# Age.Group.Call needs to be included alongside the specific groups listed in
# the function call.
X <- group_by(X, ..., Age.Group.Code)
X <- summarise(X, Population = sum(unique(Population)), Deaths = sum(Deaths))
# Calculate crude rate for each age group
X$Crude.Rate <- (X$Deaths * 100000) / X$Population
# Add in the age weights from the age_key dataframe
X <- merge(
x = X,
y = age_key[, c("Age.Group.Code", "Age.Weight")],
by = "Age.Group.Code"
)
# Multiply crude rates by age weight and sum across age groups for finished
# product
X$Age.Adjustment <- X$Age.Weight * X$Crude.Rate
X <- group_by(X, ...)
X <- summarise(X, Crude.Rate.Adjusted = sum(Age.Adjustment))
return(X)
}
The first thing I want to know is what the top overall causes of death are. For this, I’m not going to use the age-adjusted rates. I just want to get an idea of what the most common causes of death are across this entire time-span. To do that, I’ll just sum the deaths by cause across the dataframe. Because there are over a hundred sub-chapters in the ICD, I just want to look at the main chapters at first to get a general picture.
total_deaths <- df %>%
left_join(icd_key, by = c("ICD.Chapter.Code" = "ICD.Chapter.Code")) %>%
group_by(ICD.Chapter.Code, ICD.Chapter) %>%
summarise(Deaths = sum(Deaths)) %>%
arrange(desc(Deaths))
kable(total_deaths) %>%
kable_styling() %>%
scroll_box(width = "100%", height = "600px")
ICD.Chapter.Code | ICD.Chapter | Deaths |
---|---|---|
I00-I99 | Circulatory Diseases | 15251874 |
C00-D48 | Neoplasms | 10504677 |
J00-J99 | Respiratory Diseases | 4355028 |
V01-Y98 | External Causes | 3281894 |
G00-G99 | Nervous System Diseases | 2379786 |
E00-E90 | Endocrine Diseases | 1853280 |
F00-F99 | Mental Disorders | 1761991 |
K00-K93 | Digestive Diseases | 1648674 |
A00-B99 | Parasitic/Infectious Diseases | 1198825 |
N00-N99 | Genitourinary Diseases | 1120420 |
R00-R99 | Not Classified Elsewhere | 612842 |
M00-M99 | Musculoskeletal Diseases | 248895 |
P00-P96 | Perinatal Conditions | 238935 |
Q00-Q99 | Congenital Malformations | 182947 |
D50-D89 | Blood Diseases | 177261 |
L00-L99 | Skin Diseases | 74236 |
O00-O99 | Pregnancy/Childbirth | 14267 |
U00-U99 | Special Purposes | 2931 |
H60-H95 | Ear Diseases | 1240 |
H00-H59 | Eye Diseases | 829 |
Diseases of the circulatory system and neoplasms lead the other top causes of death by an order of magnitude. This isn’t too surprising, as those are the chapters that include cancer and heart disease. Our least common causes of death include diseases of the eye, ear, deaths from codes reserved for special purposes, pregnancy and childbirth, and skin diseases. I’m actually quite surprised to see pregnancy and childbirth as low on the list as they are, given how dangerous childbirth has historically been.
This table also gives me some information on how I want to break down my figures. Looking at every ICD chapter by year would be too much information to show on a line graph and have it still be readable, so I already knew I’d want to split them across multiple figures. Now I know that I probably want to graph neoplasms and circulatory diseases separately from other causes. As a general rule of thumb, I like to keep the scale of a figure inside the same order of magnitude.
This whole project was started by a discussion of how heart disease has become more treatable, so naturally I want to delve deeper into the death rate for circulatory disease immediately. Neoplasms works well as a cause of death to graph alongside it, even if it weren’t the only other one in the same order of magnitude. Treating cancer is extremely difficult, and the subject of a massive amount of research, so it’ll be good to see how they compare next to each other.
death_cause <- c("C00-D48", "I00-I99")
filter(df, ICD.Chapter.Code %in% death_cause) %>%
age_adjust(ICD.Chapter.Code, Year) %>%
ggplot(aes(x = Year, y = Crude.Rate.Adjusted, color = ICD.Chapter.Code)) +
geom_line() +
geom_point() +
ylab("Age-Adjusted Crude Death Rate") +
labs(title = "Top Causes of Death Over Time") +
scale_color_discrete(
labels = icd_key$ICD.Chapter[icd_key$ICD.Chapter.Code %in% death_cause],
name = "Cause of Death"
)
There’s an overall decline for both causes, but it’s much steeper for circulatory diseases than neoplasms. The decline for neoplasms is impressively linear. I wouldn’t normally expect to see such a steady and consistent decline in real-world data. By contrast the slope on the circulatory disease appears less consistent. Just eyeballing it, I’d say it’s probably linear, but there are some potential hints of a logarithmic curve to it, meaning the decline in the death rate for circulatory disease might be starting to flatten out. I don’t think I have data across enough years to get meaningful results out of trying to fit both functions to the data and seeing which performs better. In another analysis it might be worth querying some of the databases that use older versions of the ICD and trying to equate their measures to get a bigger sample size.
Earlier I’d mentioned race and gender as potential factors, so it may be interesting to see if these factors interact with the data.
labels_top <- c("Neoplasms", "Circulatory Diseases")
names(labels_top) <- death_cause
filter(df, ICD.Chapter.Code %in% death_cause) %>%
age_adjust(ICD.Chapter.Code, Year, Race.Code, Gender.Code) %>%
ggplot(
aes(
x = Year,
y = Crude.Rate.Adjusted,
color = Race.Code,
shape = Gender.Code,
linetype = Gender.Code
)
) +
geom_line() +
geom_point() +
facet_wrap(
facets = ~ICD.Chapter.Code,
labeller = labeller(ICD.Chapter.Code = labels_top)
) +
ylab("Age-Adjusted Crude Death Rate") +
labs(title = "Top Causes of Death Over Time by Race and Gender") +
scale_color_discrete(labels = race_key$Race, name = "Race") +
scale_shape_discrete(labels = gender_key$Gender, name = "Gender") +
scale_linetype_manual(
labels = gender_key$Gender,
name = "Gender",
values = c(1, 3)
) +
guides(colour=guide_legend(override.aes=list(shape=NA)))
There are differences in death rate based on race, with Black and African American people having the highest death rates for both neoplasms and circulatory disease, but Asian people and Pacific Islanders having the lowest. In general the death rates are also higher for men than women. The overall reduction over time is fairly similar for each group though, indicating that while there is definitely an inequality in death rates, the decline in death rates doesn’t affect minority groups disproportionately less than white people. In fact, the slopes for neoplasms appear to be steeper for groups that had higher initial death rates. This may indicate that for neoplasms the amount of inequality is starting to lessen over time, though it would help to see more recent data in order to see if this is a lasting trend.
For circulatory diseases, the shape of the data is starting to look a lot more logarithmic now, with a fairly clear trend towards the decline leveling off. While the death rate for Black or African American men has declined sharply, the curve flattens out dramatically around 2011, keeping it well above the other groups.
Most of the ICD chapters showed a total number of deaths in the range of millions, so next I want to take a general look at all of those.
death_cause <- total_deaths$ICD.Chapter.Code[
which(
x = total_deaths$Deaths > 999999 & total_deaths$Deaths < 10000000
)
]
filter(df, ICD.Chapter.Code %in% death_cause) %>%
age_adjust(ICD.Chapter.Code, Year) %>%
ggplot(aes(x = Year, y = Crude.Rate.Adjusted, color = ICD.Chapter.Code)) +
geom_line() +
geom_point(aes(shape = ICD.Chapter.Code)) +
ylab("Age-Adjusted Crude Death Rate") +
labs(title = "Common Causes of Death Over Time") +
scale_color_discrete(
labels = icd_key$ICD.Chapter[icd_key$ICD.Chapter.Code %in% death_cause],
name = "Cause of Death"
) +
scale_linetype_discrete(
labels = icd_key$ICD.Chapter[icd_key$ICD.Chapter.Code %in% death_cause],
name = "Cause of Death"
) +
scale_shape_manual(
labels = icd_key$ICD.Chapter[icd_key$ICD.Chapter.Code %in% death_cause],
name = "Cause of Death",
values = c(15, 16, 17, 15, 16, 17, 15, 16)
)
Most of these are fairly steady over time. Interestingly, death due to mental diseases shows a steady incline up to about 2013, after which it starts to decline again. Deaths from nervous system diseases, likewise, increase after that point. The other point of interest is deaths from external causes show a sudden massive uptick between 2014 and 2015, and continue to rise on this new, very steep slope into 2016.
There’s no guarantee these are related, but the difference between a mental disorder, as classified by the ICD 10 and a nervous system disease is a very fine line. In fact, several forms of dementia, such as dementia from Alzheimer’s or Parkinson’s disease, are listed under mental disorders but with a reference to codes in the nervous system diseases chapter for the underlying illnesses themselves. The divergence also appears immediately after the publication of the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V). My guess would be that changes in the DSM-V caused a shift in reporting, where deaths were more often classified as being due to nervous system disorders rather than due to dementia stemming from those disorders. In general dementia from organic causes, such as nervous system diseases, is in the F01-F09 sub-chapter of the ICD 10. It looks like the corresponding sub-chapters for nervous system diseases include Pick’s disease (G31), Huntington’s Disease(G10), and Parkinson’s Disease (G20), so the sub-chapters we want there are G10-G14, G20-G25, and G30-G31.
death_cause <- c("F01-F09","G10-G14", "G20-G25", "G30-G31")
filter(df, ICD.Sub.Chapter.Code %in% death_cause) %>%
age_adjust(ICD.Chapter.Code, ICD.Sub.Chapter.Code, Year) %>%
ggplot(aes(x = Year, y = Crude.Rate.Adjusted, color = ICD.Sub.Chapter.Code)) +
geom_line() +
geom_point() +
ylab("Age-Adjusted Crude Death Rate") +
labs(
title = "Deaths from Organic Mental Disorders and Nervous System Disorders"
) +
scale_color_discrete(name = "ICD Sub-Chapters"
)
The pattern of interest definitely seems to be related specifically to sub-chapter G30-G31, which includes Alzheimer’s disease and Pick’s disease. As in the overall graph by chapter, around 2013 the number of deaths in the ICD sub-chapter that includes dementia from nervous system diseases starts to decline, while at the same time deaths from Alzheimer’s and Pick’s disease start to rise. That definitely lines up with the idea that there wasn’t a major change in actual causes of death after 2013, just a change in how deaths were classified. The reason the pattern is seen in the Alzheimer’s and Pick’s disease group, but not the others, is probably simply due to Alzheimer’s disease being overwhelmingly more common, and thus making up the majority of the data.
External causes is a broad category that includes essentially anything that isn’t a disease. Because of that, I suspect this is an area where we’re particularly likely to see differences based on things like socio-economic status, so I want to start by breaking the data down by race and gender.
labels_gender <- c(`F` = "Female", `M` = "Male")
filter(df, ICD.Chapter.Code == "V01-Y98") %>%
age_adjust(ICD.Chapter.Code, Year, Race.Code, Gender.Code) %>%
ggplot(aes(x = Year, y = Crude.Rate.Adjusted, color = Race.Code)) +
facet_wrap(~Gender.Code, labeller = labeller(Gender.Code = labels_gender))+
geom_line() +
geom_point() +
ylab("Age-Adjusted Crude Death Rate") +
labs(title = "Deaths from External Causes by Race and Gender") +
scale_color_discrete(labels = race_key$Race, name = "Race")
There are some differences due to race, most notably a dramatically lower rate of death via external cause for the Asian or Pacific Islander group. In terms of gender, the massive uptick in death rate for external causes seems to be accounted for almost entirely by the male groups, except for the Asian or Pacific Islander male group.
To try and work out why there’s a sudden increase in death from external causes for men, I want to break down the data by gender and sub-chapter to try and see what specific cause is behind this.
filter(df, ICD.Chapter.Code == "V01-Y98") %>%
age_adjust(ICD.Sub.Chapter.Code, Year, Gender.Code) %>%
ggplot(aes(x = Year, y = Crude.Rate.Adjusted, color = ICD.Sub.Chapter.Code)) +
facet_wrap(~Gender.Code, labeller = labeller(Gender.Code = labels_gender))+
geom_line() +
geom_point() +
ylab("Age-Adjusted Crude Death Rate") +
labs(title = "Deaths from External Causes by Category and Gender") +
scale_color_discrete(
labels = str_wrap(
icd_sub_key$ICD.Sub.Chapter[icd_sub_key$ICD.Chapter.Code == "V01-Y98"],
20
),
name = "Death Cause"
)
Unfortunately the dramatic uptick in male deaths falls into the “Other” category, which contains well over a hundred unique causes of death, including falls, accidents involving machinery, animal attacks, and radiation exposure. With such a broad range, there’s no telling if the sudden spike in death rate for men in this category is due to a single factor or multiple external factors. I’ll likely do another analysis later on that dives into just the external cause of death information to get more answers.
Of additional interest is the decrease in death rate for men due to transport accidents after 2007. I wasn’t able to find any immediately obvious answers for what might have caused this, but it might be worth further investigation to try and determine if there were any likely laws, safety updates, or policy changes that caused this decline so that similar measures can be used to further reduce the death rate. There is a slight dip for women as well in the same time period, but much less noticeable. This is likely due to women having a much lower death rate from transport accidents overall. Any interventions or changes in transportation safety would have had a larger impact on those more likely to suffer accidents in the first place.
From this dataset, it’s clear to see that there is still a large deal of racial and gender inequality in causes of death. This is especially evident in racial inequality for circulatory diseases and neoplasms. However, there is some slight evidence to show that the inequality is starting to become less severe when it comes to death due to neoplasms. There has been a clear reduction in death rate due to neoplasms and circulatory disease for all groups, though the decline in circulatory disease may be starting to level out. Overall death rates are highest for Black or African American people, and lowest for people who are Asian or Pacific Islanders. This is in line with a 2002 report by the Population Reference Bureau and the trends do not appear to have changed since that time.
There has also been a rise in the Alzheimer’s and Pick’s disease death rates, likely due primarily to Alzheimer’s disease. While the rise in deaths due to Alzheimer’s disease appears to have jumped dramatically after 2013, it’s likely due to deaths that were formerly classified as being due to dementia now being classified as death due to Alzheimer’s disease. With this in mind, the increase in death due to Alzheimer’s disease appears to be a fairly steady trend.
Finally, there is a dramatic uptick in deaths due to external causes after 2014. This uptick is almost entirely accounted for by men who are not Asian or Pacific Islanders dying from causes classified as “other”. Inspection of more detailed data will be needed to try and tease out the trends behind this. Additionally, there was a dramatic drop in death rate from transport accidents after 2007 for men. The exact cause is unknown, but potentially of further interest. If the cause was due to a new policy of some kind, replication of that policy could further lower accident rates.
Overall, while this analysis does answer the original question it set out to examine, I feel as if it’s raised more questions than answers, which I consider to be about the perfect combination. There’s little more satisfying than finding that the answers to your questions come with new questions, and new depths to explore, so I look forward to coming back to this area and trying to see not only what answers I can come up with, but what new questions as well.